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Introduction
The increasing global population needs to source food from the ocean, which is a much greater 
area than the land. The ocean is rich with diversified flora and fauna, and both are sources of 
proteins, vitamins, minerals, phytohormones and bioactive compounds. Thousands of species 
of macroalgae (seaweed) dominate the vegetation of the sea floor from the intertidal to the 
subtidal zone.

The domestication of several economically important seaweed such as Saccharina, Undaria and 
Pyropia in China, Japan and the Republic of Korea, and Kappaphycus and Eucheuma in Indonesia, 
Malaysia, the Philippines and the United Republic of Tanzania led to intensive commercial 
cultivation of these seaweeds. Except for the United Republic of Tanzania, the commercial 
farming of seaweed, both temperate and tropical species, is centred in Asia. Despite the presence 
of several economically important seaweeds outside Asia, commercial farming is practised only in 
a few of non-Asian countries. These include Chile for Gracilaria and Macrocystis (Buschmann et 
al., 2001); France for Palmaria palmata, Porphyra umbilicalis and Undaria pinnatifida (Netalgae); 
and Canada for Saccharina latissima in integrated multi-trophic aquaculture (IMTA) (Chopin et 
al., 2013) and Chondrus crispus. Trial cultivation of Saccharina spp. and P. palmata is now taking 
place in Western Europe.

Seaweeds are farmed mainly for food as sea vegetables and food ingredients (Bixler and Porse, 
2011), as well as feed (Wilke et al., 2015; Norambuena et al., 2015). However, there is increasing 
interest for their use for biorefinery products that require a vast amount of biomass which must 
be farmed. 

The world is experiencing climate change, and several reports have shown that seaweeds are 
an efficient CO2 sink. Seaweed aquaculture beds (SABs) provide ecosystem services similar to 
those seaweed beds existing in the wild. The use of SABs for potential CO2 mitigation has been 
established, with commercial seaweed production in China, India, Indonesia, Japan, Malaysia, 
the Philippines, the Republic of Korea, Thailand and Viet Nam, and it is also in the developmental 
stage in Australia and New Zealand (Chung and Lee, 2014). Seaweed farming is no doubt 
an aquaculture endeavour that can be socially and economically sustainable (= equitable); 
socially and environmentally sustainable (= bearable); and economically and environmentally 
sustainable (= viable) (Circular Ecology, 2016). Every stakeholder has an important role along 
the value chain to make it sustainable.
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1.  PRODUCTION, CULTIVATION TECHNIQUES  
  AND UTILIZATION

For more than 100 years, China and other countries in Asia have grown seaweeds (also known as 
macroalgae) at a large industrial scale for the production of food, animal feed, pharmaceutical 
remedies and for cosmetic purposes. Commercial cultivation of seaweeds has a long history in 
Asia; in fact, the major source of cultivated seaweeds comes from this region. Despite being 
described as a low technology endeavour, it is highly successful and efficient. However, there is 
a newly emerging sector based on investment from petrochemical companies and governments 
for projects in Asia, Europe and the Americas aimed at extracting sugars from seaweed for 
ethanol, bio-based diesel, advanced biofuels, drop in fuels, biobutanol, biochemical and 
biopolymers.

Low technology cultivation can become highly advanced and mechanized, requiring on-land 
cultivation systems for seeding some life stages before grow-out at open-sea aquaculture sites. 
Cultivation and seedstock improvement techniques have been refined over the centuries, mostly 
in Asia, and can now be highly sophisticated. Advanced technologies and on-land cultivation 
systems have been developed in a few cases, mostly in the western world, wherein commercial 
viability can usually be reached only when high value-added products are obtained, their markets 
secured (not necessarily in response to a local demand, but often for export to Asia), and labour 
costs reduced to balance the significant technological investments and operational costs.

1.1 Species and varieties 
Among the farmed seaweeds, Chondrus crispus, Eucheuma denticulatum, Kappaphycus alvarezii and
K. striatus have different colour morphotypes, which range from brown, green, red, yellow and purple. 
Table 1 shows the different genera and species commercially farmed, which is composed of: 11 genera 
and over 25 species of red seaweeds with two varieties; 7 genera and 12 species of brown seaweeds; and  
5 genera and 10 species of green seaweeds with one variety. Among the red seaweeds, Gracilaria has  
11 species, followed by Pyropia with 5 species. In the brown seaweeds, Sargassum has 4 species 
while the green seaweeds are dominated by the genus Ulva, with 6 species (Figures 1–3). Figures 
1, 2 and 3 provides pictures of some of the most important commercial species for the red, brown 
and green seaweeds respecitively.
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TABLE 1.
Summary of seaweeds currently farmed

Red seaweeds Brown seaweeds Green seaweeds

Genus Species Genus Species Genus Species

Asparagopsis armata Alaria esculenta Capsosiphon fulvescens

Betaphycus philippinensis Cladosiphon okamuranus Caulerpa lentillifera

Chondrus crispus Hizikia fusiformis Caulerpa racemosa var. 
macrophysa

Eucheuma denticulatum Macrocystis pyrifera Codium fragile

Eucheuma denticulatum var. 
milyon milyon

Saccharina digitata Monostroma nitidum

Eucheuma isiforme Saccharina japonica Ulva compressa

Gracilaria asiatica Saccharina latissima Ulva fasciata

Gracilaria changii Sargassum fulvellum Ulva intestinalis

Gracilaria chilensis Sargassum horneri Ulva linza

Gracilaria fastigiata Sargassum muticum Ulva pertusa

Gracilaria firma Sargassum thunbergii Ulva prolifera

Gracilaria fisheri Undaria pinnatifida

Gracilaria heteroclada

Gracilaria lemaneiformis

Gracilaria manilaensis

Gracilaria tenuistipitata

Gracilaria tenuistipitata var. lui 
vermiculophylla

Gracilaria vermiculophylla

Gelidiella acerosa

Gelidium amansii

Hydropuntia edulis

Kappaphycus alvarezii

Kappaphycus malesianus

Kappaphycus striatus

Palmaria palmata

Pyropia dentata

Pyropia haitanensis

Pyropia pseudolinearis

Pyropia seriata

Pyropia tenera

Porphyra umbilicalis
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FIGURE 1. 
Photos of commercially farmed red seaweeds. 

 Asparagopsis armata Chondrus crispus Palmaria palmata Kappaphycus alvarezii

 

Kappaphycus striatus Eucheuma denticulatum Eucheuma isiforme Bataphycus 

    philippinensis

 

Gelidiella acerosa Gelidium amansii Gracilaria changii Graciliaria chorda

 

Gracilaria fastigiata Gracilaria firma Gracilaria heteroclada Gracilaria tenuistipitata

 

Pyropia dentata            Pyropia haitanensis                       Pyropia seriata                    Pyropia tenera           Pyropia 

yezoensis

Photos courtesy of EK Hwang, AQ Hurtado
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FIGURE 2.
Photos of commercially farmed brown seaweeds. 

FIGURE 3. 
Photos of commercially farmed green seaweeds. Photos courtesy of EK Hwang, AQ Hurtado

 Alaria esculenta Cladosiphon okamurans Hizikia fusiformis Macrocystis sp.

 Saccharina digitata Saccharina japonica Saccharina latissima Sargassum fulvellum

 Sargassum muticum Sargassum thunbergii Undaria pinnatifida

Capsosiphon fulvescens Caulerpa lentillifera Codium fragile Monostroma nitidum

  Ulva compressa Ulva fasciata Ulva intestinalis Ulva linza

  Ulva pertusa Ulva prolifera Photos courtesy of EK Hwang, AQ Hurtado
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English and local names of some farmed seaweeds are reported in Table 2.

TABLE 2.
English and local names of farmed seaweeds

Scientific name English Chinese Japanese Korean SEA region
Red seaweeds
Chondrus crispus Irish moss

Eucheuma denticulatum Spinosum

Gracilaria Ogonori Agar-agar

Kappaphycus alvarezii Tambalang,
besar

Kappaphycus striatus Elkhorn Flower, sacol

Palmaria palmata Dulse

Pyropia sp. Purple laver Zicai Nori Gim Gamet
Brown seaweeds
Alaria esculenta Winged kelp

Hizikia fusiformis Hijiki Tot hiziki

Saccharina digitata Horsetail kelp

Saccharina japonica Royal kombu,
Japanese kelp

Hai dai,
Hai tai,
Kunpu

Makombu,
Shinori-kombu,
Hababiro-kombu, Oki-
kombu, Uchi kombu,
Moto-kombu, Minmaya-
kombu, Ebisume hirome,
Umiyama-kombu, Hoiro-
kombu, Kombu

Hae tae,
Tasima

Saccharina latissima Sugar kelp, sweet 
kelp, sea belt,
poor man’s weather
glass, Kombu kombu 
royale, sweet wrack, 
sugar tang, oarweed

Kombu, Kurafuto kombu

Sargassum muticum Wireweed

Undaria pinnatifida Japanese kelp, Asian
kelp, apron-ribbon
vegetable

Ito-wakame,
Qundai-cai,
Kizami-
wakami

Wakame, Ito-wakame,
Kizami-wakami, Nambu-
wakame

Ito-wakame,
Kizami-
wakami, 
Miyok

Green seaweeds
Caulerpa lentillifera Sea grapes,

Green caviar

Lato

Codium fragile Green sea fingers,
felty fingers, dead 
man’s fingers, stag 
seaweed,
green sponge, green 
fleece, oyster thief,
forked felt alga

Monostroma nitidum Jiao-mo
Zi-cai

Hitoegusa,
Hirano hitoegusa

Ulva Sea lettuce Aonori, Aonoriko

green laver
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1.2 Farming systems

1.2.1  Sea based farming
Sea-based farming may be classified according to location: coastal; deep sea; and offshore. 
Coastal and deep-sea farming are common in Asia, and to a little extent in Latin America and in 
the Western Indian Ocean regions. The fixed off-bottom line, the hanging longline, single and 
multiple raft longlines and spider-web techniques of cultivating Eucheuma and Kappaphycus 
and sometimes Gracilaria in the coastal and deep-sea waters are well documented (Hayashi et al., 
2014; Hurtado et al., 2014; Msuya et al., 2014). Gracilaria and Macrocystis are also commercially 
farmed in Chile (Buschmann et al., 2001; Gutierrez et al., 2006). On the other hand, offshore 
farming is confined to Western Europe (Watson, 2014) and Eastern Canada (Chopin and Sawhney, 
2009), mainly the monoculture of Saccharina and Undaria. Seaweed cultivation is currently 
in its infancy in Europe. Commercial aquaculture of seaweed is found in France (Brittany, six 
farms) and Spain (Galicia, two farms), and on an experimental basis in Ireland, Asturias (Spain), 
Norway, and the United Kingdom of Great Britain and Northern Ireland. The main cultivated 
species are Saccharina latissima and Undaria pinnatifida. In Ireland, Palmaria palmata farming 
is being experimented with on the West coast, but the results seem limited. However, with the 
fast development of IMTA as a culture system in Europe, farming of Alaria esculenta, P. palmata, 
S. latissima and Laminaria japonica is gaining much attention in this region (Chopin et al., 2001;
Ridler et al., 2007).

China is known as the superpower in seaweed production and has decades of experience in 
seaweed cultivation, innovation and production. IMTA started in China about 2 000 years ago 
with a different system, called spontaneous integrated culture. Most of the culture systems 
in the country, however, are still single species intensive culture. China is well known in the 
field of marine aquaculture. More than 30 important aquaculture species, including kelp, 
scallops, oysters, abalone and sea cucumbers, are grown using various culture methods, such as 
longlines, cages, bottom sowing and enhancement, pools in the intertidal zone, and tidal flat 
culture (Zhang et al., 2007).

The concept of IMTA was coined in 2004 and refers to the use of species from different trophic 
positions or nutritional levels in the same system (Chopin and Robinson, 2004). IMTA, however, 
has been successfully practiced in Sanggou Bay in North China since the late 1980s (Fang et 
al., 1996). There are several IMTA modes in the bay, with benefits at the ecosystem level. For 
instance, the co-culture of abalone and kelp provides combined benefits as a food source and 
for waste reduction: abalone feed on kelp, and the kelp take up nutrients released from the 
abalone (Tang et al., 2013). The co-culture of finfish, bivalves and kelp links organisms from 
different trophic levels so that the algae absorb nutrients released from finfish and bivalves 
and bivalves feed on suspended faecal particles from the fish. Since kelp and Gracilaria 
lemaneiformis are cultured from December to May and from June to November, respectively, 
nutrients are absorbed by the algae throughout the year. These examples of multi-trophic 
culture maximize the utilization of space by aquaculture as they combine culture techniques in 
the pelagic and benthic zones. Implementation of IMTA in Sanggou Bay has improved economic 
benefits, maintained environmental quality, created new jobs, and led to culture technique 
innovations (Fang and Zhang, 2015).

Table 3 presents a summary of the different culture techniques of the different farmed seaweeds 
per country, all of which are in the commercial stage, with the exception of the land based 
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IMTA in Portugal. Apparently, hanging longline is common both to red and brown seaweeds. 
Except for Caulerpa, Eucheuma, Gracilaria and Kappaphycus, the source of propagules for 
commercial farming comes from spores that are grown first in hatcheries and then planted 
out when reaching the juvenile stage during favourable sea temperatures. In contrast, the four 
genera above use vegetative cuttings as propagules for commercial farming.

TABLE 3. 
Summary of the different culture techniques and species farmed by country

Country Red Brown Green

Australia Ulva pertusa*1

Brazil Gracilaria birdiae*6

Gracilaria domingensis**3

Kappaphycus alvarezii**4,6

Kappaphycus striatus**4,6

Cambodia Kappaphycus alvarezii**4,6

Kappaphycus striatus**4,6

Canada Chodrus crispus**1 Alaria esculenta*6

Palmaria palmata*2 Macrocystis integrifolia*6

Saccharina latissima*3

Caribbean Islands Gracilaria spp.**6

Chile Gracilaria  chilensis**20,21 Macrocystis pyrifera*6

Betaphycus  philippinensis**18

China Eucheuma denticulatum**4,6 Hizikia fusiformis*6

Gracilaria lemaneiformis**6 Macrocystis pyrifera*10

Gracilaria tenuistipitata var.

liui**13 Saccharina japonica*3

Kappaphycus alvarezii**6 Sargassum fulvellum*6

Kappaphycus striatus**4,6 Sargassum horneri*6

Pyropia haitanensis*5 Sargassum muticum*6

Pyropia yezoensis*5 Sargassum thunbergii*6

Undaria pinnatifida*3,6

Denmark Saccharina latissima*2,3 Ulva intestinalis*2

France Palmaria palmata*1 Undaria pinnatifida*2,3 Ulva pertusa*2

Porphyra umbilicalis*5 Saccharina latissima*2,3

Fiji Islands Kappaphycus alvarezii**6

Kappaphycus striatus**6

India Eucheuma denticulatum**4,6 Ulva fasciata*5

Gelidiella acerosa**5

Gracilaria sp.**10

Hydropuntia edulis**1,6

Kappaphycus alvarezii**10

Kappaphycus striatus**10

(cont.)
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Country Red Brown Green
Indonesia Eucheuma denticulatum**4,6

Gracilaria asiatica**13

Gracilaria heteroclada**6,10,13

Gelidium amansii**6

Kappaphycus alvarezii**4,6

Kappaphycus striatus**4,6

Ireland Asparagopsis armata**6 Alaria esculenta*3

Palmaria palmata*6 Saccharina latissima*3

Israel Gracilaria sp.**2 Ulva pertusa**2

Japan Gelidium amansii*6 Cladosiphon okamuranus*6 Caulerpa lentillifera*8

Pyropia pseudolinearis*5 Saccharina japonica*6 Monostroma nitidum*5

Pyropia tenera*5 Undaria pinnatifida*6 Ulva sp.*16

Pyropia yezoensis*5

Republic of Korea Gracilaria spp.*/**6 Hizikia fusiformis*6 Codium fragile*/**6

Pyropia dentata*5 Saccharina japonica*3 Capsosiphon fulvescens*17

Pyropia seriata*5 Saccharina latissima*3 Ulva compressa*5

Pyropia tenera*5 Sargassum fulvellum*/**6 Ulva linza*5

Pyropia yezoensis*5 Undaria pinnatifida*3 Ulva prolifera*5

Madagascar Kappaphycus alvarezii**6

Malaysia Eucheuma denticulatum**6

Kappaphycus alvarezii**6

Kappaphycus malesianus**6

Kappaphycus striatus**6

Myanmar Kappaphycus alvarezii**6

Kappaphycus striatus**6

Norway Saccharina latissima*3

Panama Kappaphycus alvarezii**6

Philippines Eucheuma denticulatum**6 Caulerpa lentillifera**14

Eucheuma denticulatum   var. Caulerpa racemosa var.

milyon milyon**6 macrophysa**15

Gracilaria changii**10,13

Gracilaria firma**10,13

Gracilaria heteroclada**10,13, 14

Gracilaria manilaensis**10,13

Kappaphycus alvarezii**6,7,11,12

Kappaphycus malesianus**6

Kappaphycus malesianus**6

Kappaphycus striatus**4,6,7,11,12

(cont.)
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Country Red Brown Green
Portugal Gracilaria vermiculophylla*2 Codium tomentosum*2

Chondrus crispus*2 Ulva armoricana*2

Palmaria palmata*2 Ulva pertusa*2

Pyropia sp.*2

South Africa Ulva fasciata**2

Ulva pertusa**2

Ulva rigida**2

South Pacific Islands Eucheuma denticulatum**4,6,10

Kappaphycus alvarezii**4,6,10

Solomon Islands Kappaphycus alvarezii**4

Spain Palmaria palmata**7 Undaria pinnatifida*3

Sri Lanka Kappaphycus alvarezii**10

Kappaphycus striatus**10

Tanzania Eucheuma denticulatum**14

Kappaphycus alvarezii**10

Taiwan Gracilaria confervoides**19 Caulerpa lentillifera**14

Pyropia sp.*5 Monostroma sp.

Thailand Gracilaria fisheri**6,13,14 Caulerpa lentillifera**2

Gracilaria tenuistipitata**6,13,14 Chaetomorpha sp.**19

Hydropuntia edulis**13 Ulva sp.**13

Venezuela Kappaphycus alvarezii**4,6

Kappaphycus striatus**4,6

Viet Nam Eucheuma denticulatum**6 Caulerpa lentillifera**14

Gracilaria asiatica**13,14

Gracilaria firma**13,14

Gracilaria heteroclada**13,14

Gracilaria tenuistipitata**13,14

Kappaphycus alvarezii**6,9

Kappaphycus striatum**6,9

United Kingdom of 
Great Britain and 
Northern Ireland 
(Scotland)

Alaria esculenta*3

Laminaria digitata*3

Laminaria hyperborea*3

Saccharina latissima*3

United States of 
America

Pyropia sp.*2 Saccharina latissima*3

Note: *spore; **vegetative.1land-based raceways/tanks; 2land-based IMTA; 3sea-based longlines IMTA; 4fixed off-bottom; 5floating nets; 6hanging 
longline (horizontal); 7hanging longline (vertical); 8hanging longline (basket bag); 9hanging longline (net bags); 10single raft longline; 11multiple raft 
longline; 12multiple longline (spider web); 13pond broadcasting; 14pond “rice-planting”; 15intertidal “rice planting”; 16pole system; 17bamboo-net; 18stone 
tying; 19co-culture with shrimps; 20direct burial method; 21plastic tube method.
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One of the most discussed types of aquaculture in Western Europe, Eastern Canada and the 
United States of America is IMTA, which is the farming, in proximity, of several species at different 
trophic levels (Figure 4). The species selected should be well adapted to these conditions and 
be appropriately chosen at multiple trophic levels, based on their complementary functions 
in the ecosystem as well as for their existing, or potential, economic value. Proximity should 
be understood as not necessarily considering absolute distances, but connectivity in terms of 
ecosystemic functionalities in which management at the sea-area level is paramount.

IMTA is an ecologically engineered ecosystem management approach, which, in fact, does 
nothing more than mimic a simplified natural trophic network. IMTA creates a balanced 
system for increased environmental sustainability (ecosystem services and green technologies 
for improved ecosystem health); economic stability (product diversification, risk reduction and 
job creation in coastal communities); and societal acceptability (better management practices, 
improved regulatory governance, and appreciation of differentiated and safe products). IMTA 
programmes, in different states of development and configuration, are taking place in at least 
40 countries (Barrington et al., 2009).

IMTA has gained recognition after 16 years of existence in the Western world and has slowly 
been developing in other regions. The most advanced IMTA systems, near commercial or at 
commercial scale, can be found in the temperate waters of Canada, Chile, China, Israel and South 
Africa, for example (Chopin et al., 2008; Barrington et al., 2009). Table 4 presents the genera 
selected based on their established husbandry practices, habitat appropriateness, biomitigation 
ability and economic life. Developments of IMTA projects have been started in France, Ireland, 
Japan, the Republic of Korea, Mexico, Norway, Portugal, Spain, Thailand, Turkey, the United 
Kingdom of Great Britain and Northern Ireland (mostly Scotland), and the United States of 
America (see Table 5 for sea-based practices and Table 6 for land-based practices) (Barrington et 
al., 2009). IMTA offers many advantages compared with the monoculture system (Barrington et 
al., 2009), such as:

i. Effluent biomitigation: the mitigation of effluents through the use of biofilters (e.g. 
seaweeds and invertebrates), which are suited to the ecological niche of the farm.

ii. Disease control: prevention or reduction of disease among farmed fish can be provided 
by certain seaweeds due to their antibacterial activity against fish pathogenic bacteria 
(Bansemir et al., 2006), or by shellfish that reduce the virulence of infectious salmon anaemia 
virus (Skar and Mortensen, 2007).

iii. Increased profits through diversification: increased overall economic value of an operation 
from the commercial by-products that are cultivated and sold.

iv. Increased profits through obtaining premium prices: potential for differentiation of the 
IMTA products through ecolabelling or organic certification programmes.

v. Improving local economy: economic growth through employment (both direct and indirect) 
and product processing and distribution.

vi. Form of “natural” crop insurance: product diversification may offer financial protection 
and decrease economic risks when price fluctuations occur, or if one of the crops is lost to 
disease or inclement weather.
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FIGURE 4. 
Conceptual diagram of an IMTA operation, including the combination of fed aquaculture  
(e.g. finfish) with organic extractive aquaculture (e.g. shellfish), taking advantage of the 
enrichment in particulate organic matter; and inorganic extractive aquaculture (e.g. seaweeds) 
taking advantage of the enrichment in dissolved inorganic nutrients (Chopin et  al., 2008).

Note: DIN = dissolved inorganic nutrients; POM = particulate organic matter.

TABLE 4. 
Organisms suitable for IMTA in temperate waters

Fish Crustaceans Seaweeds Molluscs Echinoderms Polychaetes

Anoplopoma Homarus Argopecten Apostichopus Arenicola

Dicentrarchus Penaeus Alaria, Durvillaea, Choromytilu Athyonidium Glycera

Gadus Ecklonia, Lessonia, Crassostrea Cucumaria Nereis

Laminaria,

Hippoglossus Macrocystis, Haliotis Holothuria Sabella

Saccharina,

Melanogrammus Saccorhiza, Mytilus Loxechinus

Mugil Undaria Pecten Paracentrotus

Oncorhynchus Placopecten Parastichopus

Paralichthys Asparagopsis Tapes Psammechinus

Pseudopleuronectes Callophyllis Stichopus

Chondracanthus Strongylocentrotus

(cont.)
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Fish Crustaceans Seaweeds Molluscs Echinoderms Polychaetes

Salmo

Scophthalmus Chondrus

Gigartina

Gracilaria

Gracilariopsis

Palmaria

Sarcothalia

Ulva
Source: Barrington et al., 2009.

TABLE 5: 
Sea-based IMTA practices in different countries

Country Fish / shrimp Molluscs / invertebrates Seaweed Status Reference/ 
company

Australia Thunnus 
maccoyii 
Seriola lalandi

Solieria robusta Ecklonia 
radiata

E Wiltshire et al., 
2015

Canada Salmo salar Mytilus edulis Saccharina latissima 
Alaria esculenta

CSP P Chopin & 
Robinson, 2004
Ridler et al., 
2007

China Shrimp, finfish Chlamys farreri Crassostrea 
gigas Haliotis discus hannai 
Patinopecten yessoensis 
Scapharca broughtonii 
Apostichopus japonicus

Saccharina japonica 
Gracilaria lemaneiformis

C Fang et al., 
1996a &b; Fang 
et al., 2016

China Lateolabrax 
japonicus 
Pseudosciaena 
crocea

Ostrea plicatula Laminaria/Gracilaria E Jiang et al., 
2009

Chile Salmo salar Gracilaria chilensis 
Macrocystis pyrifera

C Troell et al.,
1997

Denmark Oncorhynchus 
mykiss

Saccharina latissima C Marinho et al., 
2015

Denmark Oncorhynchus 
mykiss

Chondrus crispus E Marinho et al.,
2015

Indonesia Chanos chanos Litopenaeus vannamei E Putro et al., 
2015

Indonesia Grouper 
Pomfret fish 
Red carp

Abalone Lobster
Kappaphycus alvarezii 
Eucheuma cottonii E Sukiman et al., 

2014

Ireland
Salmo salar

Crassostrea gigas Mytilus 
edulis

Laminaria digitata 
Pyropia Asparagopsis 
armata

E Kraan, 2010

Japan Pagrus major Apostichopus japonicus Laminaria Undaria Ulva E Yokoyama, 2013

(cont.)
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Country Fish / shrimp Molluscs / invertebrates Seaweed Status Reference/ 
company

Japan Pagrus major Ulva E Hirata et al.,
1994

Norway Salmo salar Mytilus edulis Laminaria E Barrington et 
al., 2009

Norway Salmo salar Mytilus edulis Gracilaria E Handå, 2012

Philippines Haliotis asinina Caulerpa lentillifera 
Eucheuma denticulatum 
Gracilaria heteroclada

E
Largo et al., 
2016

Portugal Dicentrarchus 
labrax 
Scophthalmus 
maximus

Chondrus crispus 
Gracilaria bursa- pastoris
Palmaria palmata

E Matos et al.,
2006

Spain Dicentrarchus 
labrax
Scophthalmus 
maximus

Chondrus crispus 
Gracilaria bursa- pastoris
Palmaria palmata

E Matos et al.,
2006

United 
Kingdom of 
Great Britain 
and Northern 
Ireland

Salmo salar Mytilus edulis 
Psammechinus miliaris 
Paracentrotus lividus

E Stirling & 
Okumuş, 1995

United 
Kingdom of 
Great Britain 
and Northern 
Ireland

Salmo salar Crassostrea gigas Pecten 
maximus Psammechinus 
miliaris Paracentrotus 
lividus

Palmaria palmata 
Laminaria digitata 
Laminaria hyperborea 
Saccharina latissima 
Sacchoriza polyschides

E SAMS-Loch 
Duart Limited/
West Minch 
Salmon

United States 
of America

Atlantic cod Pyropia spp. C Carmona et al., 
2006

Note: CSPP - Commercial Scale Pilot Project; E - Experimental; C – Commercial

Seaweed is a growing category in Europe, although it is far behind Asia, where marine plants are 
part of a longstanding traditional culinary culture.

In France, the largest producer of seaweed is Algolesko, which began harvesting seaweed in 
May 2014. Interestingly, two of its partners are oyster growers, which, apart from their obvious 
expertise in aquaculture, also demonstrates the complementary nature of seaweed culture 
with other types of aquaculture. Future aquaculture production will see more IMTA practices, 
which optimizes interaction between species while reducing environmental impact, leading 
to sustainable production systems that will supply healthy sustainable seafood for future 
generations. The potential of seaweed for bioenergy production and a strong interest in 
developing IMTA have given a new dimension to seaweed aquaculture.

1.2.2  Land-based farming
There are only a few successful commercial land-based tanks/raceways of seaweed farming that 
have been reported. These are: Chondrus crispus (three different colour morphotypes) in Canada 
as sea vegetables (direct source of human food) grown in raceways; Ulva pertusa, in Israel, 
grown in raceways using deep seawater from the Mediterranean Sea and used in diversified 
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food preparations such as pasta, salads, drinks, and abalone feed (SEAKURA); Ulva pertusa in 
South Africa, grown in raceways as the primary food of abalone (Bolton et al., 2006; Robertson-
Anderson et al., 2008), and SeaOr Marine Enterprise in Israel using fish (Sparus aurata), seaweeds 
(Ulva and Gracilaria) and molluscs (Haliotis discus hannai).

TABLE 6.
Land-based IMTA practices in different countries

Country Fish/shrimp Molluscs/ 
invertebrates

Seaweed/micro-algae Status Reference/ 
company

Canada Hippoglossus 
hippoglossus

Palmaria palmata E Corey et al., 2014

Chile
Oncorhynchus kisutch 
O. mykiss

Crassostrea 
gigas

Gracilaria chilensis
C

Buschmann et al., 
1996

France Dicentrarchus labrax Cladophora
 Ulva

E Metaxa et al., 
2006

C. gigas Ulva E Lefebvre, Barillé & 
Clerc, 2000

Ireland O. mykiss Pyropia dioica Ulva 
Hanniffy & Kraan, 
2006; www.
thefishsite
.com

Israel Sparus aurata Haliotis discus 
hannai

Gracilaria Ulva SeaOr Marine 
Farm, Israel

Portugal Scophthalmus maximus 
Chondrus crispus 
Gracilaria bursa-pastoris 
Palmaria palmata,

E
Matos et al., 2006

Republic of 
Korea

Sebastes schlegeli Stichopus 
japonicus

Sargassum fulvellum E Kim et al., 2014

South Africa Haliotis midae Gracilaria Ulva C Bolton et al.,
2006

Spain Dicentrarchus labrax Tapes 
decussatus

Isochrysis galbana E/C Borges et al., 
2005

Spain S. maximus Tetraselmis suecica 
Phaeodactylum 
tricornutum

United States of 
America

Hippoglossus 
stenolepsis

Chondracanthus 
exasperatus

C Söliv International

United States of 
America

Anoplopoma fimbria H. discus hannai Palmaria mollis C Big Island 
Abalone 
Corporation

Note: CSPP = Commercial Scale Pilot Project; E = Experimental; C = Commercial

http://www.thefishsite .com
http://www.thefishsite .com
http://www.thefishsite .com
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1.3 Major seaweed producing countries
Except for Chile, which farms Gracilaria and Macrocystis, and the United Republic of Tanzania, 
which cultivates Eucheuma, seaweed production is mainly concentrated in Asia (Table 7).

TABLE 7.
Major seaweed producing countries

Species Major countries

Red seaweeds

Chondrus crispus Canada

Eucheuma denticulatum Indonesia, Philippines, United Republic of Tanzania

Gracilaria spp. China, Chile, Indonesia, South Africa, Viet Nam

Kappaphycus alvarezii, K. striatus Indonesia, Malaysia, Philippines, United Republic of Tanzania

Pyropia spp. China, Japan, Republic of Korea

Brown seaweeds

Saccharina spp. China, Japan, Republic of Korea

Hizikia fusiformis Republic of Korea

Undaria China, Japan, Republic of Korea

Green seaweeds

Caulerpa lentillifera Japan, Philippines, Viet Nam

Codium fragile Republic of Korea

Monostroma nitidum Japan

Ulva spp. Japan, Republic of Korea

1.4 Volume and value of farmed seaweeds
As of 2016, recent production data on Saccharina, Undaria and Pyropia from China were not 
available. The author communicated with colleagues in academia and industry, but only Japan 
and the Republic of Korea responded to the request. Table 8 shows the volume of farmed 
seaweeds in Japan and the Republic of Korea.

Indonesia and the Philippines are the world’s two major producing countries of Kappaphycus 
alvarezii (cottonii) but while Indonesia continues to increase its production, in the Philippines it 
has decreased since 2009. The sudden increase of production in Indonesia since 2008 is mainly 
due to the opening of new cultivation areas, considering the presence of thousands of islands 
in the country. However, the country’s productivity is only 11 tonnes dry weight (dwt) ha-1 
year-1. Despite the geographic location of the Philippines, which every year is exposed to several 
cyclones that often destroy farming structures and propagules, the country’s productivity is 18 
tonnes dwt ha-1 year-1 (Porse and Rudolph, 2017). Malaysia, though it is within the Coral Triangle 
and has vast areas suitable for farming, is still facing challenges to increase its production. In 
2014 and 2015, 26 076 tonnes and 24 533 tonnes of Kappaphycus, respectively, were produced 
(Suhaimi, personal communication).

Production of Kappaphycus in other Southeast Asian countries, such as Cambodia, China, India, 
Myanmar, Viet Nam, and in Latin America are still small at present and data are not available.
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TABLE 8. 
Major seaweeds farmed in Japan and the Republic of Korea

Genus

Japan (2014) Republic of Korea (2015)

Volume (tonnes) Volume (tonnes) Value (USD 1 000)

Red

Gracilaria 4 8

Pyropia 316 200 390 196 319 441

Brown

Hizikia 28 157 15 227

Saccharina 32 800 442 771 78 409

Sargassum 86 256

Undaria 43 900 321 910 70 104

Green

Capsosiphon 377 9 964

Codium 3 895 997

Cladosiphon 15 500

Ulva 6 748

Sources: Korea Ministry of Oceans and Fisheries, 2015; Japan Ministry of Agriculture, Forestry and Fisheries, 2014.

The shallow areas in the coastal zone of the United Republic of Tanzania and Zanzibar 
allow favourable cultivation of Eucheuma denticulatum; hence, these locations are major 
producing areas. Figure 5 shows the latest production of spinosum (common vernacular 
name of E. denticulatum) in the three major producing countries.

FIGURE 5: 
Seaweed carrageenan (Eucheuma spinosum) production, 2015 (tonnes, dry weight) 
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Gracilaria and Gelidium are two genera of seaweed suitable for the processing of agar, the 
former being more appropriate for food applications while the latter for bacteriological and 
biotechnological applications.

Gracilaria is a ubiquitous seaweed, which can be found both in tropic and temperate waters, 
while Gelidium is more confined to temperate waters. The capacity of Gracilaria to grow in 
euryhaline areas and to regenerate from fragments are characteristics that favour intensive 
cultivation from brackish-water to full seawater areas (Hurtado-Ponce et al., 1992; Hurtado-
Ponce, 1993; Hurtado-Ponce et al., 1997).

Asia-Pacific is the largest producing region of Gracilaria, followed by the Americas (mainly Chile), 
and Africa and Europe (Figure 6). A more detailed graph is presented in Figure 7, which shows 
the countries that produce Gracilaria, with Indonesia being the major producer. Africa is the 
leader for the production of Gelidium (Figure 8).

FIGURE 7.
Gracilaria production by country, 2014 (tonnes, 
dry weight) 

FIGURE 6. 
Gracilaria production by region, 2015 (tonnes, 
dry weight) 

Fig 12

50 000

22 000

26 000

10 000

6 000
 4 000 2 000

China Chile Others Vietnam

Namibia & South Africa Japan & Korea Indonesia

Fig 11

80 000

24 000

3 000 100

AmericasAsia Pacific AfricaEurope

Source: Porse and Rudolph, 2017.

Source: Paravano, 2015.



20

1.5 Utilization
Farmed seaweeds have been mainly used as sources of direct food in Asia for many centuries; 
however, in the past two to three decades, western countries have started including seaweeds 
in their diet for health reasons. Several single species have various applications, as reflected 
in Table 9. A total of 59 species are currently farmed and dominated by red seaweed (54.3 
percent), followed by brown seaweeds (23.7 percent), and finally green seaweeds (22 percent). 
Seaweeds are prime candidates for the integrated biorefinery approach, both for the production 
of high-value compounds (such as edible food, food and feed ingredients, biopolymers, fine 
and bulk chemicals, agrichemicals, cosmetics, bioactives, pharmaceuticals, nutraceuticals, 
botanicals) and low-value bioenergy compounds (e.g. biofuels, biodiesels, biogases, bioalcohols,  
biomaterials).

TABLE 9. 
Summary of utilizations of farmed seaweeds

Species

Food

Feed Fuel*Food ingredient

Sea vegetable Agar Carrageenan Alginate

Red seaweeds

Asparagopsis armata x

Betaphycus philippinensis x

Chondrus crispus x x

Eucheuma denticulatum x x x

Eucheuma denticulatum
var. milyon milyon

x x x

Gelidiella acerosa x x

Gelidium amansii x x

Gracilaria asiatica x x x

(cont.)

Fig 13

6 000

1 000

2 500

600

AmericasAsia Pacific AfricaEurope

Source: Porse and Rudolph, 2017.

FIGURE 8. 
Gelidium production by region, 2015 (tonnes, dry weight)

The production of Gelidium is led by 
Africa with 6 000 tonnes, followed by 
Asia-Pacific (2 500 tonnes), Europe (1 000 
tonnes), and the Americas (600 tonnes)
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Species

Food

Feed Fuel*Food ingredient

Sea vegetable Agar Carrageenan Alginate

Red seaweeds

Gracilaria birdiae x x

Gracilaria changii x x x

Gracilaria chilensis x x x

Gracilaria domingensis x x

Gracilaria firma x x x

Gracilaria fisheri x x x

Gracilaria heteroclada x x x

Gracilaria lemaneiformis x x

Gracilaria manilaensis x x x

Gracilaria tenuistipitata x x x

Gracilaria tenuistipitata
var. liui

x x x

Gracilaria vermiculophylla x x

Gracilaria sp. x

Hydropuntia edulis x x

Kappaphycus alvarezii x x x

Kappaphycus malesianus x x x

Kappaphycus striatus x x x

Palmaria palmata x x

Porphyra umbilicalis x

Pyropia dentata x

Pyropia haitanensis x

Pyropia pseudolinearis x

Pyropia seriata x

Pyropia tenera x

Pyropia yezoensis x

Pyropia sp. x

Brown seaweeds

Alaria esculenta x

Cladosiphon okamuranus x

Hizikia fusiformis x

Macrocystis integrifolia x x

Macrocystis pyrifera x x

Saccharina digitata x x

Saccharina hyperborea x x

Saccharina japonica x x

Saccharina latissima x x

Sargassum fulvellum x x

Sargassum horneri x x

Sargassum muticum x x

Sargassum thunbergii x x

Undaria pinnatifida x x x x

Green seaweeds

Capsosiphon fulvescens x

Caulerpa lentillifera x

(cont.)
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Species

Food

Feed Fuel*Food ingredient

Sea vegetable Agar Carrageenan Alginate

Green seaweeds

Caulerpa racemosa var.
Macrophysa

x

Codium fragile x

Codium tomentosum x

Monostroma nitidum x

Ulva compressa x x

Ulva fasciata x x

Ulva intestinalis x x

Ulva linza x x

Ulva pertusa x x

Ulva prolifera x x

Ulva sp. x x

*Experimental stage.

1.6 Impact of climate change
Seaweeds are a key source of carbon in the reef ecosystem, and they are involved in other 
important processes, including the construction of reef frameworks, coral settlements and 
creation of habitats. They are a direct food source for herbivorous fish, crabs and sea urchins. 
The carbon they fix in photosynthesis enters the food chain via microbes.

Seaweeds are subject to both regional and global environmental changes in coastal waters, 
where environmental factors fluctuate dramatically because of high biological production 
and land runoff. Ocean warming and ocean acidification (OA) caused by climate changes can 
influence coastal environments and consequently affect the physiology, life cycles and community 
structures of seaweeds. According to Ji et al. (2016), some species showed enhanced growth and/
or photosynthesis under elevated CO2 levels or ocean acidification conditions, possibly due to 
increased availability of CO2 in seawater with neglected influence of pH drop. Nevertheless, 
OA can harm some macroalgae because of their high sensitivity to the acidic perturbation to 
intracellular acid-base stability. Mild cean warming has been shown to benefit most macroalgae 
examined. OA may positively affect gametogenesis because of increased availability of CO2 and 
may neutrally influence germination due to the counteractive effects of decreased pH (Roleda et 
al., 2012). OA can impact photosynthesis and respiration differently in some macroalgae. While 
it is important to look into responses of macroalgae to fluctuating pH under OA (common in 
coastal waters) (Cornwall et al., 2012), the impact of OA can affect productivity of sea-farmed 
macroalgae that experience dramatic diel pH variations. Altered chemistry under OA may reduce 
growth, photosynthesis and even lead to death of some macroalgal species (Israel and Hophy, 
2002; Martin and Gattuso, 2009). Ultraviolet B, which penetrates only several metres in coastal 
waters, is harmful for macroalgae throughout their life cycles.

Sea level rise may create more available habitat space for macroalgae to grow as more land area 
will be inundated with water. In general, the macroalgae are not particularly vulnerable to the 
impact of sea level rise, even if in some cases the increase in sea level could negatively impact 
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some species that live in shallow waters by reducing their exposure to sunlight (increased depth 
will mean more distance for sunlight to travel to reach the macroalgae).

The predicted increase in the frequency of severe weather events such as cyclones, storms and 
floods will bring an influx of nutrients into the reef ecosystem, which will increase macroalgae 
growth and reproduction. Cyclones and storms can also destroy coral reef structures, increasing 
habitat areas for macroalgae to grow.

The most notable impact of rising temperature and concomitant elevated salinity has been 
reported on farmed Kappaphycus. The high incidence of “ice-ice”, a disease affecting Kappaphycus 
and Eucheuma production, as well as epiphytic filamentous algae, were reported in Southeast 
Asia by Critchley et al. (2004), Hurtado and Critchley (2006), Vairappan (2006), Vairappan et al. 
(2008), Tisera and Naguit (2009), Borlongan et al. (2011); in China by Pang et al. (2011, 2012, 
2015); and in Madagascar by Ateweberhan et al. (2015) and Tsiresy et al. (2016).

Low productivity and production and the unavailability of propagules for the next growing cycles 
were the major problems for seaweed farmers as a result of rising temperatures. Sometimes 
the seaweed farmers stopped cultivating Kappaphycus and, consequently, their economic life 
was severely affected. While there are possible positive effects of ocean warming for some 
warm seawater-grown species, the rise of temperature may still represent a threat for the cold 
seawater-grown species by reducing their living space and ecological niche.

1.7 Future prospects
Farmed seaweeds in the tropics and subtropics will continue to grow and expand, not only 
because of their economic significance among coastal fishers, but also because of the development 
of more product applications in food industries as well as in pharmaceuticals, nutraceuticals, 
cosmetics and personal care. The combination of increasing production, innovative products 
and consumer demand for natural and organic products will no doubt lead to bright days for 
seaweed in Europe and other parts of the globe.

In Western Europe, Northeastern Canada and the United States of America, the brown seaweed 
Alaria, Laminaria and Saccharina will experience a tremendous expansion in terms of sea 
cultivation, both as monocultures and as part of the IMTA, mainly for biorefineries. Further, sea 
vegetables like Chondrus crispus, Palmaria palmata, Pyropia yezoensis and Ulva pertusa will be 
cultivated extensively in land-based systems both as a monoculture and in IMTA.

IMTA will find its way in countries where intensive fish cage and pond shrimp farming are 
practised, as in Southeast Asia, India and South America. IMTA is considered more sustainable 
than the common monoculture systems, a system of aquaculture where only one species is 
cultured, in that fed monocultures tend to have an impact on their local environments due to 
their dependence of supplementation with an exogenous source of food and energy without 
mitigation (Chopin et al., 2001). For some twenty years now, many authors have shown that this 
exogenous source of energy (e.g. fish feed) can have a substantial impact on organic matter and 
nutrient loading in marine coastal areas (Gowen and Bradbury, 1987; Folke and Kautsky, 1989; 
Chopin et al., 1999; Cromey et al., 2002), affecting the sediments beneath the culture sites and 
producing variations in the nutrient composition of the water column (Chopin et al., 2001).
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2. GENETIC TECHNOLOGIES

The global seaweed industry produced 23–24 million tonnes of wet seaweed from aquaculture 
in 2012 (FAO, 2014), as the demand for seaweed based-products exceeds the supply of seaweed 
raw material from natural stocks. Aquaculture of seaweed offers advantages over the harvest 
of natural stocks for the following reasons: stable supply and reliable access of raw material; 
uniformity of quality of the raw material; and selection of germplasm with desired traits. Seaweed 
cultivation must be technically feasible, environmentally friendly, economically equitable, and 
socially acceptable in order to be sustainable.

Traditional selection of varieties based on growth performance and resistance to “disease” is 
still used in propagating farmed species. The breakthrough in the hybridization of Laminaria 
japonica in China paved the way to massive cultivation of this species globally. In vitro cell 
culture techniques have also been employed, as these facilitate development and propagation 
of genotypes of commercial importance. There are more than 85 species of seaweeds for which 
tissue culture aspects have been reported.

Initially, the aim of these techniques focused mostly on genetic improvement and clonal 
propagation of seaweeds for mariculture; however, recently, the scope has been extended for 
use in bioprocess technology for the production of high-value chemicals of great importance in 
pharmaceuticals and nutraceuticals, and more recently, in biorefinery.

2.1 Sporulation (tetraspores and carpospores)
All brown seaweeds commercially cultivated (Hizikia, Macrocystis, Saccharina and Undaria) use 
strings for the attachment of zoospores in hatcheries during summertime until they reach 1 mm 
long, and then they are out planted into the sea in autumn. When these stocks attain a size of 
more than 1 m long, they are ready to be harvested. The growth stage from the land-based 
hatchery to grow-out is nine to ten months.

A number of reports have been conducted on the trial use of spores from Gracilaria for possible 
commercial cultivation, but as of 2016 no one has adopted the use of spores for commercial 
propagation. Likewise, the use of carposporelings from Kappaphycus alvarezii as possible 
propagules for field cultivation (Azanza and Aliaza, 1999; Azanza-Corrales, Aliaza and Montano, 
1996; Azanza and Ask, 2003) did not gain much success compared with the carposporelings from 
K. striatus, which were field cultivated in Guimaras Island, the Philippines (Luhan and Sollesta, 
2010). Further, the use of tetrasporelings from K. alvarezii (de Paula, 1999; Bulboa et al., 2007) 
also did not gain much attention among the seaweed farmers for use in commercial cultivation 
compared with other species, such as Laminaria digitata, Palmaria palmata, Pyropia yezoensis, 
Saccharina latissima and Undaria pinnatifida. This is probably due to the low germination rate 
under laboratory/hatchery conditions for mass field cultivation. Hatchery production of the 
conchocelis and/or spores for out planting purposes is already well developed in China, Japan 
and the Republic of Korea and is still practised today.
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2.2 Clonal propagation and varietal selection
Clonal propagation is the most common and simplest approach to select superior varieties from 
wild populations to improve the performance of cultivated crops (Santelices, 1992), as done for 
Chondrus (Cheney et al., 1981), Gigartina (Sylvester and Waaland, 1983), Gracilaria (Patwary and 
van der Meer, 1982, 1983), and Kappaphycus (Doty and Alvarez, 1973), all cases where it was 
exploited the organogenetic potential of seaweeds in isolating superior clones for cultivation. 
Clonal propagation of Chondrus crispus in raceways in Canada is the only known successful 
cultivation of this red seaweed. Its commercial cultivation has been perfected after more than 
ten years of trial cultivation.

2.3 Somatic embryogenesis
Somatic embryogenesis is an asexual form of plant propagation that mimics many of the events 
of sexual reproduction. This process may be reproduced artificially by the manipulation of tissues 
and cells in vitro. Some of the most important factors for a successful plant regeneration are the 
culture medium and the environmental incubation conditions. In vitro somatic embryogenesis is 
an important prerequisite for the use of many biotechnological tools for genetic improvement 
as well as for mass propagation.

Whole plants are regenerated from culture via two different processes: somatic embryogenesis, 
in which cells and tissues develop into a bipolar structure containing both root and shoot axes 
with a closed vascular system (essentially, the type of embryogenesis that occurs in a seed); and 
organogenesis, in which cells and tissues develop into a unipolar structure, namely a shoot or a 
root with the vascular system of this structure often connected to parent tissues.

2.4 Micropropagation
2.4.1  Tissue and callus culture
Tissue culture is the science of maintaining cells and/or tissues in vitro in a sterile environment 
that regulates specific growth and development patterns. Culture conditions requiring control 
include: physical conditions (controlled with an environmental chamber or walk-in culture room), 
light, temperature, photoperiod and aeration; and chemical conditions (controlled by the culture 
media), all essential nutrients, minerals, pH and quality of water. Culture media is either solid 
(agar) or liquid. Plant growth regulators (PGRs) are essential to induce developmental changes in 
cells to create specific tissues. There are five classes of PGR, namely: auxins, promoting both cell 
division and cell growth; cytokinins, promoting cell division; gibberellins, for cell division; abscisic 
acid, inhibiting cell division; and ethylene, controling fruit ripening.

Plants can be regenerated in tissue culture either from tissue explants or from isolated cells. 
When plant cells and tissues are cultured in vitro, in most cases they exhibit a very wide range 
of plasticity. Regeneration of the whole plant from any single cell depends on the concept that 
each cell, if given the appropriate stimuli, has the genetic potential to divide and differentiate 
into all types of tissues. This genetic potential by plant cells is referred to as totipotency. Several 
species of red, brown and green macroalgae have been reported to regenerate from callus, as 
shown in Table 10. Although several successful studies were reported on the regeneration of 
plantlets of Kappaphycus and Eucheuma from callus through micropropagation using different 
culture media, their economic viability in the field has yet to be tested further, though initial 
trials have been started.
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TABLE 10. 
Earlier reports on the regeneration of plants from callus

Species Status of success Major media and PGR used Reference

Red

Chondrus crispus Plant development SWM3 Chen & Taylor, 1978

Eucheuma sp. Callus formation PES Polne-Fuller & Gibor, 1987

E. denticulatum Plant development ESS + IBA and kinetin Dawes & Koch, 1991

Plant development ESS + IBA and kinetin Dawes et al., 1993

Plant development ESS/2 + PAA and kinetin Hurtado & Cheney, 2003

Gelidium sp. Plant development
SSW + NH4NO3 + (NH4)2HPO4

Titlyanov et al., 2006a

Gracilaria changii Plant development mESCs; PES Yeong, Khalid and Phang, 
2008

G. tenuistipitata Plant development PGRs Yokoya et al., 2004

Kappaphycus alvarezii
Plant development ESS + IBA and kinetin Dawes & Koch, 1991

Plant development ESS + IBA and kinetin Dawes et al., 1993

Plant development PES + NAA, BA, spermine Munoz et al., 2006

Plant development ESS/2 + PAA and kinetin Hurtado & Biter, 2007

Plant development AMPEP + PAA and kinetin
Hurtado et al., 2009; Yunque 
et al., 2011

Plant development

VS 50, f/2 50, ASP12-NTA + IAA, 
2-4-D, BA and
colchicine Hayashi et al., 2008

Plant development PES, VS 50, F/2 + IAA and BAP Yong et al., 2014

Plant development

VS 50 + IAA, kinetin, spermine, 
colchicine or oryzalin

Neves et al., 2015

Callus formation VS 50, f/2 50, ASP12-NTA Zitta et al., 2013

Callus formation PES + IBA + 6-BA Li, et al., 2015

Callus and filament 
formation

PES and Conway + BA + IAA; BA 
+ NAA Sulistiani et al., 2012

Plant development PES + BAP, NAA, NSE Yong et al., 2014

Palmaria palmata Plant regeneration KTH f/2
Titlyanov et al., 2006b; 
Sanderson, 2015

Brown seaweeds

Laminaria japonica Plant regeneration MS + Vit. B2 + C-751 Yan, 1984

Undaria pinnatifida Plant regeneration MS + Vit. B2 + C-751
Zhang, 1982; Yan, 1984; 
Kawashima & Tokuda, 1993

Green seaweeds

Ulva intestinalis Callus induction PES Polne-Fuller & Gibor, 1987
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2.4.2  Protoplast isolation and fusion
Protoplasts are living plant cells without cell walls that offer a unique uniform single cell system 
that facilitates several aspects of modern biotechnology, including genetic transformation 
and metabolic engineering. Protoplasts isolation from macrophytic benthic marine algae was 
reported as early as 1970 using mechanical methods (Tatewaki and Nagata, 1970; Enomoto and 
Hirose, 1972; Kobayashi, 1975). However, the success in producing a large number of viable 
protoplasts became possible only after the development of an enzymatic method by Millner et 
al. (1979) for Enteromorpha intestinalis (Linnaeus) Nees. Plantlet regeneration from the same 
species was reported by Rusing and Cosson (2001).

Only a few species among the farmed seaweeds were tested for protoplast isolation and its possible 
regeneration to plantlets. Among the brown seaweeds, only Laminaria japonica (Saga and Sakai, 
1984; Tokuda and Kawashima, 1988; Sawabe et al., 1993; Sawabe and Ezura, 1996; Inoue et al., 2008); 
L. saccharina and L. digitata (Butler et al., 1989); Macrocystis pyrifera (Kloareg et al., 1989); and 
Undaria pinnatifida (Tokuda and Kawashima, 1988) were reported. Only the works of Kloareg et 
al. (1989) on Macrocystis pyrifera and Matsumura et al. (2000) on L. japonica were successful in 
the regeneration of plantlets from protoplasts.

Early protoplast isolations from Kappaphycus alvarezii were made with the purpose of improving 
the genetic characteristics of this species as a source of propagules for possible commercial 
cultivation (Zablackis, et al., 1993). Digestions with cellulase and kappa-carrageenase produced 
only a few cortical cell protoplasts, while digestions with cellulase and iota-carrageenase only 
produced epidermal cell protoplasts. When both carrageenases were used in the digestion media 
with cellulase, protoplasts were released from all cell types and yields ranged from 1.0 to 1.2 × 
107 cells g-1 with sizes from 5 to 200 mm diameter. Protoplasts were subsequently cultured to 
study cell wall regeneration; however, no regeneration of plantlets was observed.

Attempts to isolate protoplast from tissue fragments (<1 mm2) of three Philippine cultivars of 
Kappaphycus alvarezii, namely the giant cultivar, the cultivar L and the Bohol wild type, by 
enzymatic dissolution of cell walls was reported by Salvador and Serrano (2005). The yields of 
viable protoplasts from young and old thalli (apical, middle, basal segments) were compared at 
various temperatures, duration of treatment and pH using eight combinations of commercial 
enzymes (abalone acetone powder and cellulase), and prepared extracts from fresh viscera of 
abalone (Haliotis asinina) and a terrestrial garden snail. Though viable protoplasts formed radially 
expanded discs and filaments arising from the disc, no regeneration to a plantlet was reported. 
Table 11 shows a summary of earlier reports on protoplast isolation and regeneration. As of 
2016, protoplast isolation and regeneration are not being used commercially and all applications 
remain in the research and development phase.
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TABLE 11.  
Summary of protoplast isolation and regeneration of farmed seaweeds

Species Status Reference

Red seaweeds

Gelidium robustum PI Coury et al., 1993

Gracilaria asiatica PI Yan & Wang, 1993

G. changii PI Yeong et al., 2008

G. chilensis PR Cheney, 1990

G. gracilis PI Huddy et al., 2013

G. tenuistipitata PI Chou & Lu, 1989; Bjork et al., 1990

Kappaphycus alvarezii PI Zablackis et al., 1993; Salvador & Serrano, 2005

Palmaria palmata PI Liu et al., 1992; Nikolaeva et al., 1999

Pyropia tenera PI Song & Chung, 1988; Fujita & Saito, 1990

P. yezoensis PI Fujita & Saito, 1990

P. yezoensis PR Yamazaki, et al., 1998; Hafting, 1999

Brown seaweeds

Cladosiphon okamuranus PR Uchida & Arima, 1992

Laminaria digitata CW Butler et al., 1989

L. digita PR Benet et al., 1997

L. japonica PI Saga & Sakai 1984; Sawabe & Ezura, 1996; Sawabe et al., 1997; Matsumura 
et al.,  2000

L. saccharina CW Butler & Evans, 1990

L. saccharina PI Benet et al., 1994

L. saccharina PR Benet et al., 1997

Macrocystis pyrifera CW Saga et al., 1986; Kloareg et al., 1989; Polne-Fuller et al., 1990

Undaria pinnatifida PR Matsumura et al., 2000

Green seaweeds

Monostroma nitidum PI Yamaguchi et al., 1989

M. nitidum PR Fujita & Migita, 1985; Uppalapati & Fujita, 2002

Ulva fasciata PR Chen & Shih, 2000

U. flexuosa PR Reddy et al., 2006

U. intestinalis PR Rusing & Cosson, 2001; Millner et al. 1979

U. pertusa PI Saga, 1984; Yamaguchi et al., 1989

U. pertusa (wild) PI Reddy et al., 2006; Yamaguchi et al., 1989

U. pertusa (wild) PR Chou & Lu, 1989; Reddy et al., 2006

U. pertusa (mutant) PR Zhang, 1983; Fujimura et al., 1989; Reddy et al., 1989; Uchida et al., 1992; 
Uppalapati & Fujita, 2002

Note: CW = cell wall formation; PI = protoplast isolation; PR = plant regeneration.

2.5 Hybridization and crossbreeding
Among the commercial farmed seaweeds, only a few brown and red seaweed species were 
subjected to hybridization and crossbreeding. 

For example, S. japonica in China was bred by crossing gametophytes and self-crossing the 
best individuals and selecting the best self-crossing line (Li et al., 2016). Its sporophytes were 
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reconstructed each year from representative gametophyte clones, from which seedlings were 
raised for farming. As stated by the Authors, “such strategy ensured Dongfang No. 7 against a 
variety of contamination due to cross-fertilization, and occasional mixing and inbred depletion due 
to self-crossing number-limited sporophytes matured year after year”. Dongfang No. 7 is derived 
from a crossbreeding of different lines of S. japonica through four rounds of self-crossing and 
selection and retains a certain degree of genetic heterozygosity, and thus it is relatively immune 
to inbreeding depression caused by the reduction of genetic variability. The farming of Dongfang  
No. 7 increased the air-dry yield by 43.2 percent over two widely farmed controls on average. This 
value was however less than the value obtained with the interspecific hybrids or the varieties 
derived from them. 

The successful work of Hwang et al. (2014) on the hybridization of female U. pinnatifida and male 
U. peterseniana led to the extended period of availability of Undaria for abalone feed and 
cultivation in the Republic of Korea. Using free-living gametophyte seeding and standard 
on-growing techniques, the second generation (F2) hybrids were found to have longer pinnate 
blades and narrower midribs than the first generation (F1) hybrid and formed only sporophylls. 
The growth and morphology of F2 hybrids originating from the sporophyll or sorus of the F1 
hybrids were not morphologically different from each other. Both of the F2 hybrids exhibited late 
maturation, with the early stages of sporophylls appearing in April.

An attempt to hybridize Kappaphycus alvarezii and Eucheuma denticulatum was successful, as 
reported by Wang (1993), using a somatic cell-fusion method to produce hybrids of non-filamentous 
or anatomically complex algae as evidenced by isoenzyme electrophoresis. However, this was not 
pursued further for its mass production for possible commercial cultivation (Table 12).

TABLE 12.
Summary of seaweeds that were hybridized

Fusion species Status Reference

Red

Gracilaria chilensis × G. tikvahiae Plant development Cheney, 1990

Porphyra yezoensis (red) × P. yezoensis (green) Plant development Fujita & Migita, 1987

P. yezoensis × P. pseudolinearis Plant development Fujita & Saito, 1990

P. yezoensis × P. haitanensis Callus development Dai et al., 1993

P. yezoensis × P. tenera (green) Callus development Araki & Morishita, 1990

P. yezoensis (green) × P. suborbiculata Callus development Mizukami et al., 1995

P. yezoensis × P. vietnamensis Callus development Matsumoto et al., 1995

P. tenera × P. suborbiculata Callus development Matsumoto et al., 1995

P. yezoensis × Bangia atropurpurea Callus development Fujita, 1993

P. yezoensis × Monostroma nitidum Plant development Kito et al., 1998

Green

Ulva pertusa × U. conglobata Plant development Reddy & Fujita, 1989

U. pertusa × U. prolifera Plant development Reddy et al.,1992

Ulva sp. × Pyropia yezoensis Protoplast fusion Saga, et al., 1986

U. linza × U. pertusa Protoplast fusion Jie, 1987

Brown

Undaria pinnatifida (female gametophyte, from 
parthenosporophytes, × male gametophyte)

Sporeling production Shan et al., 2013
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2.6 Genetic transformation
Genetic transformation occurs at the cellular level and can be used to introduce trait altering 
genes into the host genome. Cells must be regenerated into plants to recover the transgenic plant. 
Genetic transformation is a powerful tool not only for elucidating the functions and regulatory 
mechanisms of genes involved in various physiological events, but also for establishing organisms 
that efficiently produce biofuels and medically functional materials, or that carry stress tolerance 
under uncertain environmental conditions (Torney et al., 2007; Bhatnagar-Mathur et al., 2008). 
As of 2016 no genetically transformed seaweeds are being sold or used commercially for food, 
biofuel or any other applications; this technology is only used for research and development 
purposes.

Donald P. Cheney is the pioneer in researching red algal transformation. He and his colleague 
performed transient transformation of the red alga Kappaphycus alvarezii using particle 
bombardment, which was the first report about the transient transformation of seaweeds 
(Kurtzman and Cheney, 1991). Since then, there have been recent developments in macroalgal 
transformation. The report of Wang et al. (2010a) showed a viable way of producing stable 
transformants to eliminate chimeric expression, and to achieve transgenic breeding in  
K. alvarezii using SV40 promoter-driving lacZ gene into cells of K. alvarezii through particle 
bombardment of epidermal and medullary cells at 650 psi (pounds per square inch) at a distance 
of 6 cm. In another report, a transgenic K. alvarezii was successfully produced when a binary 
vector pMSH1-Lys carrying a chicken lysozyme (Lys) gene was transformed into Agrobacterium 
tumefaciens LBA4404 by triparental mating (Handayani et al., 2014). The percentage of pMSH1-
Lys transformation on K. alvarezii was 23.5 percent, while the efficiency of regeneration was 11.3 
percent. PCR analysis showed that three of the regenerated thalli contained the lysozyme gene, 
which has the ability to break down the bacterial cell wall, a significant result in the prevention 
of “ice-ice” disease in K. alvarezii.

Among the red industrially important macroalgae such as Chondrus, Gelidium, Kappaphycus 
and Pyropia, the transient gene expression system has not yet been developed in these red 
macroalgae other than P. yezoensis. Optimization of codon usage in coding regions of the 
reporter gene and recruitment of endogenous strong promoters (pPyAct1-PyGUS and pPyAct1-
GUS plasmids) are important factors in the transient gene expression system. Furthermore, the 
use of particle bombardment is the proven method of gene transfer into red algal cells (Mikami 
et al., 2011) (Table 13).

TABLE 13. 
Summary of farmed seaweeds that were genetically transformed

Species Status of 
expression

Method of gene 
transfer

Promoter Marker 
or 
reporter

Reference

Red

Gracilaria changii Stable Particle bombardment SV40 lacZ Gan et al., 2004

G. changii Transient Particle bombardment SV40 lacZ Gan et al., 2003

Kappaphycus alvarezii Transient Biolistic particle CaMV 35S GUS Kurtzman & Cheney, 
1991

K. alvarezii Stable Particle bombardment SV40 lacZ Wang et al., 2010a

Pyropia haitanensis Stable Glass bead agitation SV40 lacZ; EGFP Wang et al., 2010b

(cont.)
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Species Status of 
expression

Method of gene 
transfer

Promoter Marker 
or 
reporter

Reference

Red

P. tenera Transient Particle bombardment PtHSP70; 
PyGAPDH

PyGUS Son et al., 2012

P. yezoensis Transient Electroporation; 
particle bombardment

CaMV 35S GUS Kuang et al., 1998

P. yezoensis Transient Electroporation rbcS GUS Hado et al., 2003

P. yezoensis Transient Electroporation CaMV 35S GUS Liu et al., 2003

P. yezoensis Transient Electroporation CaMV 35S;
B-tubulin

GUS Gong et al., 2005

P. yezoensis Transient Electroporation CaMV 35S CAT, GUS He et al., 2001

P. yezoensis Transient Electroporation Rubusico GUS, 
sGFP; 
(S65T)

Mizukami et al., 2004

P. yezoensis Transient Particle bombardment CaMV 35S; 
PyGAPDH

PyGUS Hado et al., 2003

P. yezoensis Transient Particle bombardment PyAct1 PyGUS Takahashi et al., 2010

P. yezoensis Transient Particle bombardment PyAct1 AmCFP; 
ZsGFP

Mikami et al., 2009

P. yezoensis Transient Particle bombardment PyAct1 ZsYFP, 
sGFP 
(S65T)

Uji et al., 2010

P. yezoensis Transient Particle bombardment PtHSP70; 
PyGAPDH

PyGUS Son et al., 2012

P. yezoensis Stable
Agrobacterium- 
mediated gene 
transfer

Unknown Unknown
Bernasconi et al., 2004

P. yezoensis Stable
Agrobacterium- 
mediated gene 
transfer

CaMV 35S GUS Cheney et al., 2001

Brown

Laminaria japonica Transient Particle bombardment CaMV 35S GUS Qin et al., 1998

L. japonica Stable Particle bombardment SV40 GUS Jiang et al., 2003

L. japonica Transient Particle bombardment CaMV 35S, 
UBI, AMT

GUS Li et al., 2009

L. japonica Stable Particle bombardment FCP GUS Li et al., 2009

L. japonica Stable Particle bombardment SV40 HBsAg Jiang et al., 2002

L. japonica Stable Particle bombardment SV40 Rt-PA Zhang et al., 2008

L. japonica Stable Particle bombardment SV40 bar Zhang et al., 2008

Undaria pinnatifida Transient Particle bombardment CaMV 35S GUS    Qin et al., 1998

U. pinnatifida Transient Particle bombardment SV40 GUS Yu et al., 2002

Green

Ulva pertusa Transient Electroporation CaMV 35S, GUS Huang et al., 1996

U. pertusa Transient Particle bombardment UprbcS EGFP Kakinuma et al., 2009

Note: AmCFP = humanized cyan fluorescent protein; AMT = aminomethyltransferase; CaMV 35S = cauliflower mosaic virus 35S promoter; CAT = 
chloramphenicol acetyltransferase; EGFP = enhanced green fluorescent protein; FCP = fucoxanthin chlorophyll a/c- binding protein; GUS = glucuronidase; 
HBsAg = human hepatitis B surface antigen; lacZ = bacterial beta-galactosidase; PtHSP70= Porphyra tenera promoter; PyAct1 = P. yezoensis actin 1 
promoter; PyGAPDH = P. yezoensis glyceraldehyde-3-phosphate dehydrogenase; PyGUS = P. yezoensis glucuronidase; Rt-PA = recombinant tissue 
plasminogen activator; sGFP = superfolder green fluorescent protein; S65T = mutated threonine; SV40 = a promoter; UBI = ubiquitin (as gene promoter); 
UprbcS = Ulva pertusa ribulose-1,5-bisphosphate carboxylase/oxygenase (gene promoter); ZsGFP = humanized green fluorescent protein; ZsYFP = 
humanized yellow fluorescent protein.
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According to Mikami (2013), genetic transformation is reported in red and brown seaweeds using 
the SV40 promoter; however, isolation of transgenic clone lines produced from distinct single 
transformed cells, which is the final goal of the genetic transformation of seaweeds as a tool, 
has not been reported, and seaweed genetic transformation is thus not fully developed. Due to 
the problems with efficient genetic transformation systems, the molecular biological studies of 
seaweeds are currently progressing more slowly than are the studies of land green plants. Since 
a genetic transformation system allows the performance of genetic analysis of gene function 
via inactivation and knock-down of gene expression by RNAi and antisense RNA suppression, 
its establishment will enhance both biological understanding and genetical engineering for the 
sustainable production of seaweeds and also for the use of seaweeds as bioreactors.

Though in vitro culture techniques as described above are currently being developed for seaweeds, 
which can create new genetic variants or promote clonal propagation in photobioreactors for 
high-end applications, most commercial seaweed cultivation, especially in the subtropical to 
tropical waters, is currently based on simple vegetative propagation because of economic and 
farming advantages.
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3. MAJOR PROBLEMS OF FARMING SEAWEEDS

3.1 Disease and epiphytism
When a seaweed is suffering, we call it diseased. A seaweed is diseased when it is continuously 
disturbed by some causal agents that results in an abnormal physiological process that it 
disrupts its normal structure, growth, function or other activities. The concepts of disease 
are the following (Singh, 2007): the normal physiological functions of seaweed are disturbed 
when they are affected by pathogenic living organisms and/or by some environmental factors; 
initially, seaweed reacts to the disease causing agents, particularly in the site of infection; later, 
the reaction becomes more widespread and histological changes take place; such changes are 
expressed as different types of symptoms of the disease which can be visualized macroscopically; 
and as a result of the disease, seaweed growth is reduced, deformed or even dies.

Disease occurrence is generally driven by the interactions of three factors (Agrios, 2005; Garret 
et al., 2009): a susceptible host population; the presence of a competent endophyte/malaise; and 
a conducive (biotic and abiotic) environment (Figure 9).

FIGURE 9.
Infection triangle

Despite the advances in seaweed farming, disease occurs, especially in areas where stocking is 
intensive. Table 14 shows a summary of seaweed diseases caused by bacteria, fungi and epiphytes.
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3.2 Social and financial
Issues on social problems pertinent to seaweed farming stem from the unacceptability by the 
community to the introduction of a novel farming system. This is brought on mainly if such 
farming system affects the immediate environment.

One of the biggest problems of seaweed carrageenan farming is the accessibility to financial 
assistance, especially in areas where cyclones or typhoons occur, such as the Philippines. Normally, 
farming structures and propagules are destroyed when the typhoon signal is No. 2 or higher. 
The capacity to rehabilitate is a major problem. The need to have crop insurance in seaweed 
aquaculture activity is important so that in times of calamities seaweed farmers can claim a 
certain amount of the lost crop and structures to restart farming.
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4. IMPACT OF SEAWEED FARMING

4.1 Socio-economic impact
The comprehensive report of Valderamma et al. (2013), which includes six case studies 
of carrageenan seaweed farming in six different countries (India, Indonesia, Mexico, the 
Philippines, Solomon Islands and the United Republic of Tanzania), attests to the economic 
benefits of Kappaphycus farming in the tropics and subtropics. In the temperate countries, 
reports include an economic analysis of Laminaria digitata farming in Ireland by Edwards and 
Watson (2011); a cost analysis for ethanol produced from farmed seaweeds by Philippsen et al. 
(2014); a new bioeconomy for Norway by SINTEF (2014); and economic feasibility of offshore 
seaweed production in the North Sea by Van den Burg et al. (2013). All these reports clearly 
show that seaweed farming is economically beneficial to farmers in particular and the local and 
national economy in general.

4.2 Ecological and environmental impact
Seaweed farming is an extractive aquaculture whose process of production of valuable biomass 
renders various ecosystem services with ecological and economic values (Chopin et al., 2008, 2010; 
Neori et al., 2007; Radulovich et al., 2015). Seaweed farming adds oxygen during photosynthesis 
and cleans seawater from excess nutrients (nitrogen, phosphorus and others). Nutrient extraction, 
or uptake, cleans water effectively and thoroughly through a process known as bioremediation 
(Forster, 2008). Seaweed farming enhances biodiversity and fisheries (Radulovich et al., 2015). 
Seaweeds are carbon sinks that can reduce ocean acidification through uptake of CO2 from 
water.

Among the red seaweeds being farmed, Kappaphycus is drawing much attention in places where 
it is being introduced. The literature shows that this seaweed is endemic in the tropics such as 
Indonesia, Malaysia and the Philippines; its first successful commercial farming was reported 
in the Philippines in the early 1970s (Doty, 1973; Parker, 1974; Doty and Alvarez, 1981). Since 
then, it has been introduced in almost 30 countries worldwide. Such introduction without prior 
scientific and quarantine protocols and proper management led to some negative impacts in 
Hawaii, United States of America (Rodgers and Cox, 1999; Smith et al., 2002; Conklin & Smith, 
2005), and in India (Chandrasekaran et al., 2008), where the plant became invasive.
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5. DRIVERS OR MOTIVATIONS TO PURSUE OR 
EXPAND FARMING

The expansion or increase in seaweed farming in terms of production is mainly due to increasing 
demand for food, feed (animal) and, recently, fuel. The global demand for seaweed biomass is 
rising. Large companies using algae in their products require a regular and reliable supply of the 
material, both in quantity and quality. Western Europe, for example, will continue to improve 
farming techniques to increase production, mainly because of the high market value of the 
different products derived from seaweeds (Holdt, 2011). Figure 10 shows the pyramid of the 
seaweed product markets.

FIGURE 10. 
Pyramid schematic of seaweed product markets

5.1 Food
Asian countries will continue to consume seaweeds as part of their daily diet. There is a rising 
awareness of health and nutritional benefits from seaweeds in western countries. Likewise, there 
is a growing use by food processors in new applications that include seaweed pasta, mustard, 
rillettes and pâtés. Also, there is a high demand from the catering and food service sector that 
requires seaweed recipes. Hence, cultivation of economically important seaweed will expand as 
the population grows.
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5.2 Feed (aquaculture)
The commercialization of land- and sea-based IMTA in Western Europe will open more 
opportunities to an immense use of seaweed as part of the diet of fish such as salmon, rainbow 
trout, cod, sea bass and other high-value fish. This is simply because several earlier studies have 
demonstrated the positive effects not only in terms of the increased growth rate, but more 
importantly, on the prevention of diseases (Wan et al., 2016; Walker et al., 2009; Valente et al., 
2006). Likewise, hogs fed with seaweed resulted in higher milk production, decreased mortality 
by 50 percent, reduction in the use of antibiotics by 50 percent, generally improved health, 
reduced feed intake (gut health), earlier maturation, improved taste (industrial taste panel), and 
doubled omega-3 content (Kraan, 2015). The high demand of seaweed-fed abalone will continue, 
as the growing population prefers traceable marine food. The newly emerged application of 
seaweed in the shrimp diet will be developed and refined further. For these reasons, responsible 
and sustainable farming of seaweed will increase in the next few years.

5.3 Fuel
Traditionally, seaweeds have not been considered as feedstock for bioenergy production, 
but have been used in food, in medicine or as fertilizer, and in the processing of phycolloids 
and chemicals (Bixler and Porse, 2011). The cultivation of algal biomass for the production of 
third-generation biofuels has received increasing attention in recent years, as seaweeds can be 
produced in the marine environment and on non-arable lands. Production yields of algae per 
unit area are significantly higher than those for terrestrial biomass (Wei, Quarterman and Jin, 
2013; Schenk et al., 2008). The chemical composition of algae makes it suitable for conversion 
into biofuels, especially the subtidal large brown kelps of the order Laminariales (Hughes et al., 
2013) and Ulva (Bruton et al., 2009).

Seaweeds are already farmed on a large scale in Asia and to a lesser extent in Europe, primarily 
in France, and on a research scale in Scotland (Kelly and Dworjanyn, 2008). Western Europe, 
Ireland in particular, is becoming aggressive in research and development for a marine bioenergy 
and biofuel industry (Roberts and Upham, 2012). Biofuel production from macro-algae is in its 
infancy. There is a strong collaboration in the private sector, such as Statoil ASA, which entered 
into a partnership with Seaweed Energy Solutions AS (SES) and Bio Architecture Lab (BAL) to 
develop a macroalgae-to- ethanol system in Norway. The aim of the partnership is to develop a 
10 000 ha seaweed farm off the coast of Norway, which will produce 200 000 tonnes of ethanol 
(equivalent to 2 percent of the European Union’s ethanol market) (Ystanes and Fougner, 2012). 
SES is developing the technology for large-scale cultivation and harvesting technology, while 
BAL is responsible for developing the technology and the process to convert the macro-algae 
into ethanol (Murphy et al., 2013).

Though several preliminary investigations have been conducted to assess the technical feasibility, 
environmental viability and economic profitability of seaweed farming for fuel (Watson, 
2014; Valderamma et al., 2013; Watson et al., 2012), numerous parameters (such as method 
of cultivation, species of seaweed, yields of seaweed per hectare, time of harvest, method of 
harvesting, suitability of seaweed to ensiling the gross and net energy yields in biogas, carbon 
balance, cost of the harvested seaweed, and cost of the produced biofuel) have to be developed 
economically to obtain viable algae biofuel production.
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6. CONSERVATION AND SUSTAINABLE USE 
STRATEGIES

Conservation is a careful preservation and protection of resources that includes a well-planned 
management of the natural resources to prevent exploitation, destruction or neglect. There 
is biodiversity of seaweeds within species, between species, and ecosystems, with each species 
having its own peculiar characteristics to adapt in a certain habitat. Seaweeds, both harvested 
and farmed, are important sources of livelihood to humans. Conserving and sustaining these 
resources for the benefit of mankind are imperative.

A sustainable livelihood is one that can be carried out over the foreseeable future without 
depleting the resources it depends upon and without depriving others of a livelihood. In order 
for a livelihood to be sustainable, there should be: economic development; social equity; and 
environmental protection. Sustainable development can be achieved if decisions are made to 
be economically profitable, biologically appropriate and socially acceptable (Figure 11) (Eigner-
Thiel et al., 2013) (Circular Ecology, 2016).

FIGURE 11:
Sustainability paradigm (http://www.circularecology.com)   

Currently, intensive fed aquaculture (finfish and shrimp) throughout the world is rapidly 
increasing, making environmental impact the main concern. This concern pertains to the direct 
discharge of significant nutrient loads into coastal waters from open waters and with the 
effluents from land-based systems. The only way to mitigate this environmental concern is to 

Fig16

Social

Sustainable

Equitable Bearable

Viable
Economic

Sustainability
Environmental
Sustainability

http://www.circularecology.com


43

adopt an aquaculture system that is sustainable and balanced, a system known as integrated 
multi-trophic aquaculture (IMTA) (Chopin et al., 2001). Aquaculture is the world’s fastest 
growing food production sector, and is associated with environmental, economic and societal 
issues. IMTA offers an innovative solution for environmental sustainability, economic stability, 
and societal acceptability of aquaculture by taking an ecosystem-based management approach. 
IMTA is the farming, in proximity, of aquaculture species from different trophic levels and with 
complementary ecosystem functions, so that one species’ excess nutrients are recaptured by the 
other crops and synergistic interactions among species occur (Chopin et al., 2013). By integrating 
fed aquaculture (finfish, shrimp) with inorganic and organic extractive aquaculture (seaweed 
and shellfish), the wastes of one resource user becomes a resource (fertilizer or food) for the 
others. Such a balanced ecosystem approach provides nutrient bioremediation capability, mutual 
benefits to the co-cultured organisms, economic diversification by producing other value-added 
marine crops, and increased profitability per cultivation unit for the aquaculture industry.

In order for seaweed farming to be sustainable, the following actions are to be implemented: 
expansion of farming areas, wherever possible and profitable, and subject to the needs of other 
sectors and environmental health; improvements in productivity through the development 
and wide adoption of better aquaculture practices, to include improved quality of seed 
supply, establishment of land-sea based nurseries, including innovative approaches such as 
IMTA; increased investment in research, development and extension (RD&E) to meet expected 
challenges, including disease risks, climate change and introductions of non-indigenous species; 
and strong collaboration among government agencies, academia and the private sector. Table 
15 presents the conservation and sustainability strategies for farmed seaweeds.

TABLE 15. 
Conservation and sustainable strategies for farmed seaweeds

Conservation 
and sustainable 
strategies

Action plans

Capacity enhancement 
of human resources

• Active enhancement of public promotion and environmental education through regular 
training/workshops/seminars

• Cross-country/area visits to successful seaweed areas/farmers

• National and international collaboration and networking
• Improve scientific knowledge and strong cooperation with local and international societies 

and stakeholders working on the conservation of marine resources

Diversified livelihood
• Introduction of invertebrate aquaculture and sea-ranching, such as sea urchins, sea 

cucumbers and sea abalone and other high-value animals, instead of fisheries/capture in areas 
where there is natural population

• Cultivation of other economically important seaweeds with bioactive, biofuel, 
pharmaceutical, cosmetic and nutraceutical potential

Ecosystem- based 
management

• Adaption of better aquaculture practices
> Sufficient buffer space between lines and farms to allow free water movement
> Reduction of the number of farms in dense cultivation areas to include maximum carrying 

capacity
> Use of appropriate cultivation method suitable to the environmental conditions of a given 

area
> Use of biodegradable planting materials

• Proper zoning of aquaculture activities
• Adaption of a no-no policy of placing seaweed farms near or on top of coral reefs or in marine 

protected areas
• Prevention of marine pollution coming from inland domestic and industrial effluents and 

sea-oil pollution

(cont.)
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Conservation 
and sustainable 
strategies

Action plans

Secured sustainability

• Large-scale production
> Production on a large scale in order to secure profitability, stable operation of the 

production facilities, and build up a buyer’s market
> Maximizing the potential of macro-algae using the biorefinery approach

• Products
> Development of other product applications of agarophytes, carrageenophytes, 

alginophytes and some green macro-algae
> Development of biorefinery processes, which make possible parallel utilization of several 

components (pharmaceuticals and cosmetics, food and feed, bioplastic and polymers, bulk 
chemicals and fuel, and heat and energy)

> Development and testing of animal feed based on seaweed biomass
> Securing marketing channels and maturing of the market for seaweed and products 

based on seaweed
> Strong cooperation between industry, academia/research centres and government 

authorities
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7. CAPACITY BUILDING

7.1 Education
Development of human resources through scholarships and fellowships is encouraged, especially 
in developing countries, to pursue professional and personal advancement in the different fields 
of specialization in seaweeds for graduate and post-graduate programmes. Such education 
will prepare students to embark in tougher responsibilities needed in the community and the 
industry. A number of scholarships are being offered by developed countries, such as Australia, 
European countries, Japan, United Kingdom of Great Britain and Northern Ireland, and the 
United States of America, and are highly competitive.

7.2 Research and training
Skills training is designed both to improve student effectiveness as researchers and to equip 
them with the skills they will need in a career after graduating, whether to choose to follow 
an academic or a non-academic career path. The structure and design of PhD programmes 
should incorporate generic skills and be formulated with direct engagement with employers 
and enterprises where appropriate. 

Worldwide, state universities and colleges as well as research centres have good programmes 
for seaweed research and training. Students and trainees are given the opportunity to conduct 
research according to the needs of the industry under the supervision of a professor or a scientist. 
They are trained to: conceptualize and write a proposal; conduct the study with little supervision; 
collect, analyse and interpret the data; make conclusions; write a manuscript for publication; and 
share the results with the scientific community through attendance at symposia and congresses.

It is in the stage of research and training that individuals will establish a strong working 
relationship with their mentor, peers, the private sector and the scientific community.
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8. ROLE OF INTERNATIONAL AND REGIONAL 
ASSOCIATIONS IN THE DEVELOPMENT  AND 
MANAGEMENT OF FARMED SEAWEEDS

There are several international and regional associations that are involved in the development 
and management of farmed seaweeds, as shown in Table 16. These associations have different 
mandates to fulfil for the betterment of the community and industry.

TABLE 16. 
International, regional and local associations, organizations and societies engaged in seaweed 
research and other related activities

Location Name of organization/
society

Objectives

Asia-Pacific Asian Pacific Phycological 
Association

• Develops phycology in the Asia-Pacific region, to serve as a 
venue for the exchange of information related to phycology 
and to promote international cooperation among phycologists 
and phycological societies in the Asia-Pacific region

• Holds meetings at least once every three years

Asia-Pacific Asia-Pacific Society
for Applied Phycology

• Cooperates with national and international phycological 
organizations.

Australia Australasian Society for 
Phycology and Aquatic 
Botany

• Promotes, develops and assists the study of, or an interest, in 
phycology and aquatic botany within Australasia and elsewhere

• Establishes and maintains communication with people 
interested in phycology and botany

China
China Algae Industry 
Association

• Promotes the rationalization of alga, producing and processing 
product mix, management system and business organization

• Contributes to the alliance of industry, agriculture and business
• Coordinates the relation of production, supplement and 

marketing

China Chinese Phycological Society • Builds China’s largest professional information service platform, 
science and technology innovation platform, and brand 
promotion platform for the algae industry

Europe British Phycological Society • Advances education by the encouragement and pursuit of all 
aspects of the study of algae and publishes the results of the 
research in a journal as well as other publications.

• Publishes the British Journal of Phycology and the newsletter, 
The Phycologist 

Europe
Federation of European 
Phycological Societies

• Provides a forum for all European phycological societies and 
individuals with an interest in phycology; enables, promotes 
and enhances algal (including cyanobacterial) research, 
education and other activities; increases public awareness of 
the importance of algae and cyanobacteria; and contributes 
to public debate and policy issues involving these organisms 
throughout Europe

Europe
Hellenic Phycological Society • Promotes basic and applied phycological research, organizes 

congresses, and develops international relationships

Indonesia Asosiasi Rumput Laut 
Indonesia

• Develops downstream seaweed industries to create more 
added value from this marine commodity and to create job 
opportunities

(cont.)
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Location Name of organization/
society

Objectives

Japan
Japanese Society of 
Phycology

• Promotes research that is related to algae and phycology 
and serves as a central hub of people who are interested in 
phycology

Republic of Korea Korean Society of Phycology • Promotes publications of algae, which deal with phylogenetics, 
taxonomy ecology and population biology, physiology and 
biochemistry, cell and molecular biology, and biotechnology and 
applied phycology

• Publishes the journal Algae

Philippines Philippine Phycological 
Society, Inc.

• Promotes the science of phycology in the Philippines

Philippines Seaweed Industry 
Association of the 
Philippines

• Develops better technology for growing and processing better 
quality colloids in alliance with academic institutions and 
international associations

South America Brazilian Society of 
Phycology

• Gathers together people and institutions interested in the 
development of phycology

• Promotes and stimulates teaching and research on algae and 
other photosynthetic aquatic organisms

South America Chilean Phycological Society • Promotes phycological research, and the development, scientific 
knowledge and protection of the phycological flora in Chile

Southeast Asia ASEAN Seaweed Industry 
Club

• Promotes strong cooperation and networking among the 
ASEAN countries

Spain Spain Phycological Society 
(Sociedad Española de 
Ficologia)

• A forum of national and foreign professionals interested in the 
world of algae

• Establishes partnerships between phycologists, public and 
private research organizations, and companies interested in 
the study and applications of algae

United States of 
America

International Phycological 
Society

• Develops phycology; distributes phycological information; 
cooperates among international phycologists and 
phycological organizations; and convenes the International 
Phycological Congress every four years

United States of 
America

International Seaweed 
Association

• Convenes the International Seaweed Symposium every three 
years, the leading global forum for researchers, industrial 
companies and regulators involved in the seaweed sector

United States of 
America

International Society for 
Applied Phycology

• Promotes research, preservation of algal genotypes and the 
dissemination of knowledge concerning the utilization of algae

United States of 
America

Marinalg International • Promotes the image and uses of seaweed-derived 
hydrocolloids in food, pharmaceuticals and cosmetics

United States of 
America

Phycological Society of 
America

• Promotes research and teaching in all fields of phycology; 
publishing the Journal of Phycology
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9. SOURCES OF INFORMATION

9.1 Regional and international centres
Only a few countries and regions have their own seaweed centres that cater to the needs of 
the industry and community. The western countries have centres dedicated mainly for basic and 
applied research on algae that may be absent in the developing countries. However, a small 
research laboratory is normally present in the university or in fisheries institutions. Table 17 lists 
international centres that have strong collaboration with other institutions/academia or industry 
in and out of the region with their respective mandates.

TABLE 17. 
Some international algae centres

Name and website University/private sector Mandate

AlgeCenter Danmark
(www.algecenterdanmark.dk)

Aarhus University; Kattegatcentret; 
Danish Technological Institute

Research in the areas of: 
biorefinery; algae growing; and 
energy production dedicated to the 
study and enhancement of algae 
(macro and micro) marine plants 
and marine biotechnology

Develops and commercializes 
marine and freshwater macroalgae 
for fuel, feed and fertilizer 
applications

Centre d’Etude et de Valorisation des 
Algues (CEVA) (www.ceva.fr)

Pleubian, France

MACRO – the Centre for Macroalgal 
Resources & Biotechnology (https://
research.jcu.edu.au/macro)

James Cook University, Australia

Norwegian Seaweed Technology Center
(www.sintef.no) 

SINTEF Fisheries and Aquaculture; 
SINTEF Materials and Chemistry; 
Norwegian University of Science and 
Technology (NTNU);
Department of Biology; Department of 
Biotechnology

Develops technology within 
industrial cultivation, harvesting, 
processing and application of 
seaweed in Norway

Seaweed Energy Solutions AS
(www.seaweedenergysolutions.com)

Norway, Portugal and Denmark Focuses on large-scale cultivation 
of seaweed primarily for energy 
purposes

The biggest storage of seaweed information in terms of taxonomy, description and distribution 
is found in www.algaebase.org. All universities and research institutions that have seaweed 
programmes have a herbarium of their local species, as well as algae journals and books in their 
libraries.

http://www.algecenterdanmark.dk
http://www.ceva.fr
https://research.jcu.edu.au/macro
https://research.jcu.edu.au/macro
http://www.sintef.no
http://www.seaweedenergysolutions.com
http://www.algaebase.org
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9.2  Dissemination, networking and linkages
Scientific knowledge coming from research can be disseminated through the following ways: 
publication in peer-reviewed journals, symposium proceedings and books; presentation of 
results in different symposia and congresses; and writing in popularized magazines, newsletters, 
brochures and flyers for the industry.

Networking is important in the seaweed community. There is a need to work together to develop 
sea agriculture, or sea farming, in order to cater to the needs of the industry. Vertically integrated 
supply chains request a lot of energy from small companies. There is a need to improve the 
value chain for better efficiency and maximize shared benefits among the seaweed community. 
There are mutual benefits and assistance derived from linkages and networking activities with 
both local and international organizations. Linkages and networking are different in the degree 
of commitment by the partners. In linkages, the relationship between partner organizations is 
quite loose. It intends to serve the members of both sides according to their respective needs, 
interests and objectives. It creates bonds together to solicit support and assistance for purposeful 
activities. Networking, on the other hand, is much stronger, usually because the groups and 
agencies have common objectives and beneficiaries. Networking is basically about extending the 
outreach of the resources in different ways so as to increase the effectiveness of the programme. 
The areas of operation can also be increased through networking. A network is composed of 
several institutions, universities or research centres that bind together for a common goal. 
They work together to attain common objectives, undertake innovative practices, and update 
members regarding breakthroughs in different disciplines. Table 18 lists some of the active 
networks in different regions.

TABLE 18. 
Various networks involved in seaweed farming and allied activities

Network Objectives

Asian Network for 
Using Algae as CO2 
Sink

Encourages collaboration among member countries in conducting research in sustainable CO2 
removal by marine-life mechanisms

Canadian Integrated 
Multi-Trophic 
Aquaculture Network

Provides interdisciplinary research and development and highly qualified personnel training in 
the following linked areas: ecological design, ecosystem interactions and bio mitigative efficiency; 
system innovation and engineering; economic viability and societal acceptance; and regulatory 
science

Danish Seaweed 
Network

Promotes the production, application, communication and knowledge of seaweed, and also to 
strengthen the national collaboration.

Global Seaweed 
Network

Develops a programme, which over the next 5–10 years will enhance and develop the global 
seaweed community into an internationally recognized and respected scientific body that can 
innovate, provide knowledge and tools for scientific research, aquaculture, conservation and 
society, influence policymakers, and enable economic progress

Nordic Algae Network 
(Denmark, Iceland, 
Norway, Sweden).

Analyses the results that will establish a best practice model and suggests policies for the 
successful sustainable commercial utilization of marine macro-algae resources

Helps the partners to a leading position in the algae field for commercial utilization of high-value 
products and energy from algae

(cont.)
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Network Objectives

Norwegian Latin 
American Seaweed 
Network. Norwegian 
Seaweeds Network.

Increases the synergy and facilitates collaboration between partners

Encourages cooperation among the seaweed stakeholders across Latin America and Europe in 
order to support the development of the seaweed sector

REBENT
(France – national 
network coordinated 
by IFREMER)

Strengthens interest and knowledge of benthic algal taxonomy, systematics and species 
identification, and promotes collaboration and exchange of information

Collects and organizes data concerning marine habitats and benthic biological communities in the 
coastal zone to provide relevant and coherent data to allow scientist administrators and the public 
to better determine the existing conditions and detect spatiotemporal evolution
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10. EXCHANGE PROGRAMMES

10.1 Information
Science and technology provide critical tools that help address national and global needs. 
Freedom of scientific exchange and stronger scientific collaboration to benefit humankind is of 
paramount importance. Open exchange of information and ideas is critical to scientific progress. 
To achieve this end, there should be: promotion of a strong, non-governmental, scientific 
publishing enterprise that ensures access to information and exchange of scientific ideas and 
information among all parties with legitimate uses while appropriately protecting copyright and 
security-related information; assurance of the quality of science and technological advancement 
through open, rigorous and inclusive peer review scientific publishing; and open interactions 
among scientists, engineers and students from across the globe.

Developments in computer technology have opened many opportunities to gain access to 
multiple systems to gather data or exchange information. Open access and exchange of 
information is one of the core values of academics. Open access is part of the open science 
movement and covers various initiatives and projects across the globe to make academic studies 
and results available to a wider readership. As open access publications are available free of 
charge throughout the world, even people in poorer countries who usually lack the financial 
means can access and use them.

Regular members of the International Seaweed Association have free access to the Journal of 
Applied Phycology, a journal that publishes articles on microalgae and macroalgae (seaweeds) 
with four issues each year.

10.2 Scientists and experts
Scientists and experts play crucial roles in the exploitation, management, conservation and 
sustainability of seaweed resources. Results of their scientific studies are used to formulate 
policies for the government to adapt for implementation.

According to Dr Houde of the Chesapeake Biological Station, United States of America, scientists 
have the difficult task of walking the fine line between traditional “science-worthy” science or 
making the news. Traditional science takes time, as the peer review process is typically a slow 
one, even though it helps to minimize errors. Often, it moves too slowly for policy, which has 
now begun to turn to “post normal” science, which pools the collective advice of experts. 

Seaweed farming is centred on the management of the environment and sustainability of 
the commodities. It takes several years for scientists and experts to transfer the science-based 
technology to the industry. Trials of farming Kappaphycus and Eucheuma in the Philippines 
started in 1965 and it was only in 1971 that the first harvest of seaweed for export purposes was 
attained (Doty and Alvarez, 1981). Also, the introduction of IMTA in Canadian waters started 
as early as 2000 and became commercial several years after. Though biological and economic 
results were positive, social acceptability was a critical component in aquaculture sustainability 
(Barrington, Chopin and Robinson, 2009). Scientists and experts, together with the different 
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stakeholders, met several times to discuss the importance and significance of IMTA. All agreed 
that IMTA has the potential to reduce the environmental impacts of salmon farming, benefit 
community economies, and improve industry competitiveness and sustainability. This successful 
aquaculture system is currently being replicated either on an experimental or near commercial 
stage in Western Europe (Holdt and Edwards, 2014; Lamprianidou, Telfer and Ross, 2015; Freitas, 
Morrondo and Ugarte, 2016).

Scientific and technological development is impossible without efficient communication between 
scientists or technologists and the community. Such that, a higher level of scientific research can 
be achieved through collaboration.

10.3 Test plants
Only test plants preserved in silica gels and dried samples previously soaked in 10 
percent formaldehyde and later drained are allowed to be sent by courier to other 
universities or institutions outside from its point of origin for collaborative work. 
This is especially true in developing countries, which lack the facilities to analyse the 
samples for a specific test. The test plants serve as the share of the collaborative study, 
and ultimately, part of the authorship when the results are written and submitted to a  
peer-reviewed journal for possible publication. No fresh test plants are allowed by courier for 
scientific studies. However, live test plants can be brought by a scientist personally after proper 
documents from point of origin to final destination are in order. If no prior agreement is made 
with the provider of test plants for research and scientific purposes, a due recognition through 
acknowledgement at the end of the report or paper is appropriate.
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11. CONCLUSIONS

The farming of economically important seaweeds for food has been predominantly in Asia for 
the past several decades and will continue to increase as population increases. On the other hand, 
the farming of seaweed for feed and fuel purposes will be centred in the western countries. 
Also, people in western countries are increasing their seaweed consumption as part of their diet 
for health reasons.

China, Japan and the Republic of Korea are the leading producing countries of brown seaweeds 
(Saccharina and Laminaria) and red seaweed (Pyropia), while Indonesia and the Philippines are 
the top leading producers of Kappaphycus and Eucheuma. It is surprising to learn that Indonesia 
has surpassed China and Chile in the production of Gracilaria since 2013. Indonesia is presently 
the world’s number one producer of farmed red seaweeds, notably Eucheuma, Gracilaria and 
Kappaphycus.

Innovations in farming systems are being done because of disease and epiphytism problems 
brought on by climate change. Seaweed farmers with the technical assistance of scientists and 
experts will continue to work together for the improvement of crop management, productivity 
and production. One example of a culture farming modification is the traditional farming of 
Kappaphycus, which has now shifted from shallow waters to deeper waters to avoid elevated 
surface water temperature that adversely affects productivity and production.

The use of plantlets from spores remains to be used in the laboratory for out planting purposes 
with improvements in nutrition-temperature-light requirements. Although several successful 
studies were reported on the regeneration of plantlets of Kappaphycus and Eucheuma from 
callus through micropropagation using different culture media, their economic viability in the 
field needs additional testing, though initial trials have been started. Likewise, the use of seaweed 
extract as a biostimulant in the micropropagation of Kappaphycus has proven successful and 
field trials are in progress. At present, vegetative propagation still dominates the commercial 
farming of Kappaphycus and Eucheuma. The successful crossbreeding of Saccharina japonica 
using gametophytes and sporophytes (Dongfang No. 7) may provide a model for domestication 
to be used with other brown seaweeds (kelp).

Currently, seaweed genetic transformation is not fully developed despite several studies 
reported. Because a genetic transformation system would allow to perform genetic analysis of 
gene function via inactivation and knock-down of gene expression by RNAi and antisense RNA 
suppression, its establishment will enhance both our biological understanding and genetical 
engineering for the sustainable production of seaweeds and also for the use of seaweeds as 
bioreactors.

IMTA as a holistic aquaculture system has been tested to be technically feasible, environmentally 
friendly, economically viable and socially acceptable in the western countries and China. Its 
replication in other countries, especially in countries engaged in intensive shrimp and finfish 
aquaculture, has yet to be introduced or developed.

Conservation and sustainability of farmed seaweeds are the ultimate goals to ensure that the 
biomass needed for its final product is maintained commercially.
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Seaweed international centres, societies, organizations and associations, and networking 
among scientists and experts will continue to play important and significant roles in the further 
development and ultimate sustainability of farmed seaweeds, which are good for food, feed 
and fuel.
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The genetic resources of farmed seaweeds are often omitted from regular aquaculture production 
reporting by countries despite their significance as a source of: human food; natural colloids for 
food ingredients, cosmetics, pharmaceutical and nutraceuticals purposes; and feed in aquaculture. 
This study provides significant data and information on the farmed red, brown and green seaweeds, 
with a specific focus on the following issues: (i) cultivation – species/varieties, techniques, volume and 
value of production; (ii) genetic technologies; (iii) major problems of farming seaweeds; (iv) drivers of 
seaweed farming; (v) conservation and sustainability strategies; (vi) enhancement programs;  
(vii) regional and international collaborations; (viii) sources of databases; and (ix) exchange
programmes.
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